
NETAFIMARIES™ TWD QUICK GUIDE

Drip Tape

/ Why did we launch the Aries™ dripper?

- To provide the costumers that want to use non-compensated dripper line, a product with the highest performance possible and in affordable price.
- The Aries dripper is specifically engineered for real-world environments like harsh water and soil changes allowing growers to address and overcome many of the obstacles preventing them from leveraging the benefits of a drip irrigation system.

Maximum Pressure Ranges

Wall Thickness	Operating (psi)	Flushing (psi)
638 SERIES 13 MIL	26	33
638 SERIES 15 MIL	32	42
875 SERIES 13 MIL	23	30
875 SERIES 15 MIL	26	33
990 SERIES 13 MIL	17	26
990 SERIES 15 MIL	20	30
1 1/8 SERIES 15 MIL	16	24
1 3/8 SERIES 15 MIL	17	25

Filtration Requirement

Dripper Flow Rate	Filtration Mesh	
0.11 GPH	120	
0.18 GPH	120	
0.21 GPH	120	
0.30 GPH	80	
0.41 GPH	80	
0.62 GPH	80	

/ Common Run Lengths

Note: Information contained in these Length of Run Charts represents single lateral uniformities only. For further detail regarding block and system uniformity, please contact your Irrigation Design Professional.

	Aries 875 13 MIL .18 GPH @ 12" with Flap Max length of Run (FT) based on Emission Uniformity				
ARF87513.18-12	GPM/100FT	94%	92%	90%	
12"	0.300	951′	1,149′	1,311′	

	Aries 990 13 MIL .20 GPH @ 14" with Flap Max length of Run (FT) based on Emission Uniformity				
ARF99013.20-14	GPM/100FT	94%	92%	90%	
14"	0.301	1,174′	1,420'	1,618'	

/ TWD Commonly Used Equations

1. Converting GPH to GPM per 100ft

GPH of emitter, (gph) = A

Spacing of emitters, (inches) = B

Spacing between drip lines, (inches) = C

Solution: $D = \frac{A \times 231.12}{B \times C}$

Find: Application Rate, (inches/hour) = D

2. Calculating GPM per Acre (gpm/ac)

GPH of emitter, (gph) = A

Spacing of emitters, (inches) = B

Find: GPM / 100' = C

3. Calculate Precipitation Rate or Application Rate (inches/hour)

(This is for full soil coverage over 100% of the area)

GPH of emitter, (gph) = A

Spacing of emitters, (inches) = B

Spacing between drip lines, (inches) = C

Solution:
$$D = \frac{A \times 104,544}{B \times C}$$

Find: Application Rate, (inches/hour) = D

